Shocks and labour cost adjustment

Thomas Mathae, Stephen Millard, Tairi Room, Ladislav Wintr and Robert Wyszynski

How do firms respond to shocks?  Do they first change the hours worked by their employees?  Or the number of employees?  Or wages?  Or a combination?  Does the shock matter?  And the firm’s country?  One way of answering these questions is to ask the managers within firms themselves.  And this is exactly what the Wage Dynamics Network did, surveying firms in 25 European countries. Our research used this survey to answer these questions.  We found that in response to negative shocks firms were most likely to reduce employment, then wages and then hours, regardless of the source of the shock.  But, in response to positive shocks, firms were most likely to raise wages, then employment and then hours.

Continue reading “Shocks and labour cost adjustment”

Bitesize: How volatile is Bitcoin?

Giulio Malberti and Thom Adcock

In late 2017, Bitcoin was in the spotlight for its extraordinary return. But how volatile is it?

To consider Bitcoin volatility, we look at 10-day returns (capital standards typically estimate market risk over a 10-day period) since 19 July 2010, when Bloomberg’s Bitcoin data start. We compare Bitcoin with assets in three categories – currency pairs, commodities and equities – and for each we have picked one low-volatility asset and one more volatile asset. For currency pairs and commodities, we chose the most and least volatile ones (in terms of standard deviation of 10-day returns) out of the most liquid in each category. And we chose the most and least volatile FTSE 100 equities (again, in terms of standard deviation of 10-day returns).

For stable assets we expect a peaked distribution with short tails, as returns cluster near 0%. Figure 1 shows that Bitcoin has been more volatile than any other asset in our sample.

Figure 1

But people are often interested in the downside risk of assets. We therefore consider how Bitcoin’s Value at Risk (VaR) compares to other assets. VaR is the maximum loss over a given time interval under normal market conditions at a given confidence interval (eg 99%). A 10-day 99% VaR of -10% tells you that 99% of the time your 10-day return on the asset would be no worse than a 10% loss.

Figure 2 shows Bitcoin’s VaR is high, but the VaR of the other most liquid crypto-assets is higher. TRON’s VaR to date (-84%) is almost twice Bitcoin’s (-44%).

Figure 2

Giulio Malberti and Thom Adcock work in the Bank’s Banking Policy Division.

If you want to get in touch, please email us at bankunderground@bankofengland.co.uk or leave a comment below.

Comments will only appear once approved by a moderator, and are only published where a full name is supplied.Bank Underground is a blog for Bank of England staff to share views that challenge – or support – prevailing policy orthodoxies. The views expressed here are those of the authors, and are not necessarily those of the Bank of England, or its policy committees.

Can ‘stablecoins’ be stable?

Ben Dyson

Cryptoassets (or ‘cryptocurrencies’) are notoriously volatile. For example, in November 2018, Bitcoin – one of the more stable cryptoassets – lost 43% of its value in just 11 days. This kind of volatility makes it difficult for cryptoassets to function as money: they’re too unstable to be a good store of value, means of exchange or unit of account. But could so-called ‘stablecoins’ solve this problem and finally provide a price-stable cryptoasset?

Continue reading “Can ‘stablecoins’ be stable?”

The Missing Link: Monetary Policy and The Labor Share

Cristiano Cantore, Filippo Ferroni and Miguel León-Ledesma.

How do monetary policy shocks affect the distribution of income between workers and owners of capital? Do workers benefit relatively more when policy changes? Tackling this question empirically requires technical econometric methods, but we are able to show that the share of output allocated to wages (the labor share) temporarily increases following a positive shock to the interest rate. This means that the slice of the pie enjoyed by those whose earnings are mostly made up of wages increases at the expense of profits and capital income. Strikingly, this redistribution channel that shows up in the data runs precisely in the opposite direction to the predictions of standard New Keynesian models commonly used to study the effects of monetary policy.

Continue reading “The Missing Link: Monetary Policy and The Labor Share”

Diffraction through debt: the cash-flow effect of monetary policy

Fergus Cumming.

As the UK economy went into recession in 2008, the Monetary Policy Committee responded with a 400 basis point reduction in Bank Rate between October 2008 and March 2009. Although this easing lessened the impact of the recession across the whole economy, its cash-flow effect would have initially benefited some households more than others. Those holding large debt contracts with repayments closely linked to policy rates immediately received substantial boosts to their disposable income. Cheaper mortgage repayments meant more pounds in peoples’ pockets, and this supported both spending and employment in 2009. In this article I explore one element of the monetary transmission mechanism that works through cash-flow effects associated with the mortgage market, and show that it can vary across both time and space.

Continue reading “Diffraction through debt: the cash-flow effect of monetary policy”

The whys and wherefores of short-time work: evidence from 20 countries

Reamonn Lydon, Thomas Mathae and Stephen Millard

Short-time work (STW) schemes are an important fiscal stabiliser in many countries.  In the Great Recession, 25 out of 33 OECD countries used short-time work schemes (Balleer et al. 2016).  STW schemes aim to preserve employment in firms temporarily experiencing weak demand. This is achieved by providing subsidies to firms to reduce number of hours worked by each employee, instead of reducing the number of workers. As well as being paid for actual hours worked, the subsidy is used to pay workers for hours not worked – albeit not completely compensating the loss of income due to reduced hours. In most countries, the bulk of the subsidy is paid by the state, although companies can also contribute.

Continue reading “The whys and wherefores of short-time work: evidence from 20 countries”

Bitesize: Trading activity during the Corporate Bond Purchase Scheme

David Mallaburn, Matt Roberts-Sklar and Laura Silvestri.

The Bank of England’s August 2016 monetary policy package included the £10bn ‘Corporate Bond Purchase Scheme’ (CBPS). But who did the BoE buy those bonds from?

Continue reading “Bitesize: Trading activity during the Corporate Bond Purchase Scheme”

What’s in the News? Text-Based Confidence Indices and Growth Forecasts

Arthur Turrell, Nikoleta Anesti and Silvia Miranda-Agrippino.

As the American playwright Arthur Miller wrote, “A good newspaper, I suppose, is a nation talking to itself.” Using text analysis and machine learning, we decided to put this to test – to find out whether newspaper copy could tell us about the national economy, and in particular, whether it can help us predict GDP growth.

Continue reading “What’s in the News? Text-Based Confidence Indices and Growth Forecasts”

How do bonus structures affect risk and effort choices? Insight from a lab experiment

Qun Harris, Analise Mercieca, Emma Soane and Misa Tanaka.

The bonus regulations were introduced based on the consensus amongst financial regulators that compensation practices were a contributing factor to the 2008-9 financial crisis. But little is known about how they affect behaviour in practice. So we conducted a lab experiment to examine how different bonus structures affect individuals’ risk and effort choices. We find that restrictions on bonuses, such as a bonus cap, can incentivise people to take less risk. But their risk-mitigating effects weaken or disappear once bonus payment is made conditional on hitting a high performance target. We also find some evidence that bonus cap discourages effort to search for better projects.

Continue reading “How do bonus structures affect risk and effort choices? Insight from a lab experiment”

How do firms grow as they age?

Marko Melolinna and Patrick Schneider.

Firm age is a main determinant of firm growth and survival. For example, older firms are likely to be larger and grow more slowly than younger ones (see Audretsch & Mata, 1995; Coad et al, 2013). They are also more likely to survive (see Audretsch & Mahmood, 1995, Manjón-Antolín & Arauzo-Carod, 2008). This is why, in this blog post, we look at how firms’ lifecycles – firms being born, aging and dying – are linked to how firms grow. The results show that, as they age, firms in the United Kingdom grow mainly by employing more people, rather than by generating more turnover per employee. And while firms are on average less likely to die the older they get, the cohort of firms that were born since the financial crisis are more resilient than older firms.

Continue reading “How do firms grow as they age?”