Tag Archives: Machine learning

Stirred, not shaken: how market interest rates have been reacting to economic data surprises

Jeremy Franklin, Scott Woldum, Oliver Wood and Alex Parsons

How do markets react to the release of economic data? We use a set of machine learning and statistical algorithms to try to find out.  In the period since the EU referendum, we find that UK data outturns have generally been more positive than market expectations immediately prior to their release. At the same time, the responsiveness of market interest rates to those data surprises fell below historic averages.  The sensitivity of market rates has also been below historic averages in the US and Euro area, suggesting international factors may also have played a role. But there are some signs that the sensitivity has increased over the past year in the UK.

Continue reading

2 Comments

Filed under Financial Markets, Macroeconomics, New Methodologies

New machines for The Old Lady

Chiranjit Chakraborty and Andreas Joseph

Rapid advances in analytical modelling and information processing capabilities, particularly in machine learning (ML) and artificial intelligence (AI), combined with ever more granular data are currently transforming many aspects of everyday life and work. In this blog post we give a brief overview of basic concepts of ML and potential applications at central banks based on our research. We demonstrate how an artificial neural network (NN) can be used for inflation forecasting which lies at the heart of modern central banking.   We show how its structure can help to understand model reactions. The NN generally outperforms more conventional models. However, it struggles to cope with the unseen post-crises situation which highlights the care needed when considering new modelling approaches.

Continue reading

Comments Off on New machines for The Old Lady

Filed under Microprudential Regulation, Monetary Policy, New Methodologies