Wir sind die Roboter: can we predict financial crises?

Kristina Bluwstein, Marcus Buckmann, Andreas Joseph, Miao Kang, Sujit Kapadia and Özgür Şimşek

Financial crises are recurrent events in economic history. But they are as rare as a Kraftwerk album, making their prediction challenging. In a recent study, we apply robots — in the form of machine learning — to a long-run dataset spanning 140 years, 17 countries and almost 50 crises, successfully predicting almost all crises up to two years ahead. We identify the key economic drivers of our models using Shapley values. The most important predictors are credit growth and the yield curve slope, both domestically and globally. A flat or inverted yield curve is of most concern when interest rates are low and credit growth is high. In such zones of heightened crisis vulnerability, it may be valuable to deploy macroprudential policies.

Continue reading “Wir sind die Roboter: can we predict financial crises?”